

FLASHCO₂

CO₂ Recovery from Hydrogen Manufacturing Units

Pentair FlashCO₂ is a patented CO₂ recovery technology designed for hydrogen plants and steam reformers. It uses PSA off-gas with up to 50 % CO₂ concentration, eliminating the need for steam.

By combining chilled methanol absorption with advanced CO_2 liquefaction, Flash CO_2 delivers high-purity, food-grade CO_2 at low cost – without the need for steam stripping. With a recovery rate of 92 %, Flash CO_2 outperforms conventional amine systems while offering unmatched installation flexibility and energy efficiency.

KEY BENEFITS

High Efficiency & Output

- ◆ Up to 92 % CO₂ recovery exceeding industry minimums by 12 %
- ◆ Boosts hydrogen production by up to 115%

Low Operating Costs

- ◆ No steam consumption eliminates need for LP steam
- ◆ Low energy use typically 1 GJ/ton CO₂
- ◆ No chemical waste or effluent treatment required

Superior CO₂ Quality

- ◆ Produces high-purity, food-grade liquid CO₂
- Enables recovery of valuable fuel gas byproducts

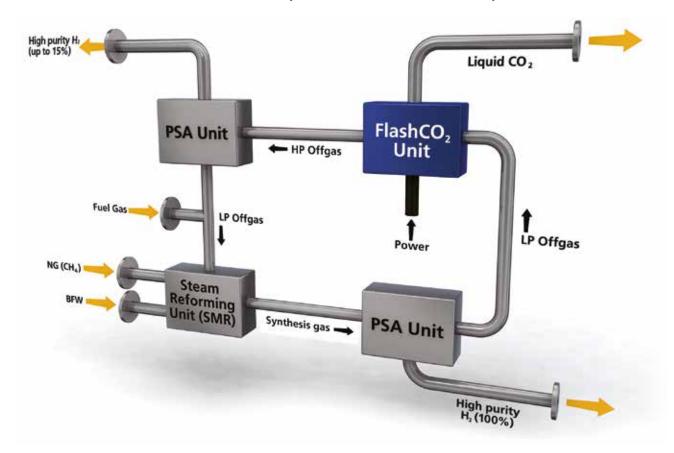
Flexible & Scalable Installation

- ◆ Stand-alone units possible
- ◆ Can be installed outside hydrogen plant fence
- ◆ Minimal changes to existing infrastructure

Environmental Impact

- Reduces greenhouse gas emissions
- ◆ Supports long-term CO₂ reduction goals

FLASHCO₂


CHALLENGE

Access to low-pressure steam and high operating costs are major challenges for CO_2 recovery using MDEA, which typically consumes 1 ton of steam per ton of liquid CO_2 . MDEA systems also require complex modifications to hydrogen plants and installation in ATEX zones, often facing licensing hurdles.

SOLUTION

FlashCO $_2$ was designed to overcome these issues with a simple, end-of-pipe solution that uses PSA off-gas and requires no steam. The unit can be installed outside the hydrogen plant fence, minimizing disruption. An optional PSA can recover up to 10 % additional high-purity hydrogen. Steam methane reforming remains the leading hydrogen production method, converting methane and steam into syngas, followed by shift conversion and PSA purification to separate hydrogen from CO $_2$ CO $_2$, and CH $_4$.

CO2 RECOVERY FROM HYDROGEN PRODUCTION (AND ADDITIONAL H2 PRODUCTION)

LEARN MORE

Snaremosevej 27 | 7000 Fredericia | Denmark | carboncapture.pentair.com

All indicated Pentair trademarks and logos are property of Pentair. Third party registered and unregistered trademarks and logos are the property of their respective owners. Because we are continuously improving our products and services, Pentair reserves the right to change specifications without prior notice. Pentair is an equal opportunity employer.